Volume regulation by flounder red blood cells in anisotonic media
نویسنده
چکیده
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.
منابع مشابه
Volume-regulatory responses of Amphiuma red cells in anisotonic media. The effect of amiloride
Amphiuma red cells were incubated for several hours in hypotonic or hypertonic media. They regulate their volume in both media by using ouabain-insensitive salt transport mechanisms. After initially enlarging osmotically, cells in hypotonic media return toward their original size by losing K, Cl, and H2O. During this volume-regulatory decrease (VRD) response, K loss results from a greater than ...
متن کاملInitial salinity tolerance and ion-osmotic parameters in juvenile Russian Sturgeon, Acipenser gueldenstaedtii, Brandt, 1833
The salinity tolerance, hematological and hydromineral regulation capabilities of juvenile Russian sturgeon (Acipenser gueldenstaedtii) were investigated in different ages and sizes in freshwater (FW: 0.05) but differed in experimental media (p < 0.05). Signifi cant differences were observed between the levels of plasma ion concentrations in different media (p < 0.01). Plasma Na+, K+ and Ca+2...
متن کاملThe Reponse of Duck Erythrocytes to Norepinephrine and an Elevated Extracellular Potassium
This paper presents evidence that duck erythrocytes regulate their size in isotonic media by utilizing a previously reported "volume-controlling mechanism." Two different experimental situations are examined. In the first, cells enlarge in a solution containing norepinephrine and an elevated [K](o); and in the second, enlarged cells shrink to their original size if the norepinephrine and excess...
متن کاملThe Reponse of Duck Erythrocytes
AB STR ACT This paper presents evidence that duck erythrocytes regulate their size in isotonic media by utilizing a previously reported "volume-controlling mechanism." Two different experimental situations are examined. In the first, cells enlarge in a solution containing norepinephrine and an elevated [K]o; and in the second, enlarged cells shrink to their original size if the norepinephrine a...
متن کاملRed Blood Cell-Conditioned Media from Non-Alcoholic Fatty Liver Disease Patients Contain Increased MCP1 and Induce TNF-α Release
Background: Non-alcoholic fatty liver disease (NAFLD) constitutes a global pandemic. An intricate network among cytokines and lipids possesses a central role in NAFLD pathogenesis. Red blood cells comprise an important source of both cytokines and signaling lipids and have an important role in molecular crosstalk during immunometabolic deregulation. However, their role in NAFLD has not been tho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 69 شماره
صفحات -
تاریخ انتشار 1977